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“What are the odds? James Ernest explains the basics of probability theory as it applies to game design, 
using examples from casino games and tabletop games” 
 
This article is a review of James Ernest’s design lecture from Gen Con 2014, “Probability for Game 
Designers: Basic Math.”  
 

Introduction 
 
Probability theory is essential to game design. We all have a rough grasp of it, but many new designers 
lack the tools to formally analyze even the simplest systems in their games. This article is an introduction 
to the formal theory.  
 
Probability theory was invented by gamers. People wanted to understand the odds in games of chance. 
Pioneers included Gerolamo Cardano in the sixteenth century, and Pierre de Fermat and Blaise Pascal in 
the seventeenth century. This whole branch of mathematics grew up around gaming. 
 

Basic Tools 
 
In probability theory, we talk about the “odds” of something happening, expressed as a number 
between 0% and 100% (or 0 and 1). If something has a 100% chance of happening, it will definitely 
happen. At 50%, it is equally likely to happen or not happen. 
 
Part of this formalization requires asking specific questions. If I’m playing with a coin, what are my odds 
of flipping heads? Well, that depends on exactly what question you want to answer. If I only flip it once, 
we assume that the odds are 50%. But if I flip it all day, the odds of getting heads at least once are nearly 
100%. 
 
If you take all the different possible outcomes of a random event and add them together, the total will 
always be 100%. For example, excluding the “edge case” where a coin lands on its edge, the odds of 
flipping heads (50%) and the odds of flipping tails (50%) add up to 100%. 
 
In two flips, there are four possible results, though they are often disguised as three. You can flip two 
heads, two tails, or one of each. “One of each” actually happens in two ways, so it’s twice as likely as the 
other two results. The full list of possibilities includes HH, TT, HT, and TH, each with a 25% chance. 
 
Exercises: Dice Odds 
 
What are the odds of rolling a 6 on a 6-sided die? You should already know this, they are 1/6. This can 
be read as “one sixth” or “one in six,” and it’s also abut 16.7%.  
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How about the odds of rolling any other number or set of numbers on the d6? Each individual number is 
the same, 1/6. Because the results are mutually exclusive, you can add them together, so the odds of 
rolling a 4 or a 5 are 1/6 + 1/6, or 1/3.  
 
You can also find odds of a result by subtracting the odds of the opposite result from 1. So, the odds of 
rolling anything except a 6 would be 1 – 1/6, or 5/6.   
 
Exercise: Catching a Pair 
 
In the game Pairs, the goal is to avoid catching a pair (two cards of the same rank). The Pairs deck 
contains a triangular distribution of cards: 1 x 1, 2 x 2, 3 x 3, etc. up to 10 x 10. There are no other cards 
in the deck. This totals out to 55 cards. The question is: if you draw one card to a hand of (9,10), what 
are the odds of getting a pair?  
 
For this exercise we will ignore all the other face up cards. There are 53 cards left in the deck, plus the 
(9,10) in your hand. Of the 53 cards, there are eight remaining 9’s and nine remaining 10’s. That makes 
17 cards that give you a pair, out of 53 cards, for a probability of 17/53 = roughly 32%. (In the actual 
game you can see other cards, and get a better value of the odds by taking those out of consideration.) 
 

Serial Probabilities 
 
The odds of several things happening together (or in sequence) can be determined by multiplying their 
individual odds. For example, the odds of flipping two heads in a row is 25%. This is 50% for the first flip, 
times 50% for the second flip. The odds of flipping three heads would be 50% x 50% x 50%, or 12.5%. 
These odds could also be expressed as 1/2, 1/4, 1/8, and so on.  
 
Note that this type of analysis only describes future events. Once you have already flipped two heads, 
the odds of that having happened are 100%, and the odds of the next flip also being heads are 50%. 
 
Exercise: What are the odds of rolling a 5 or higher on each of 3d6?  
 
Even if you roll the dice simultaneously, it can help to think of them as rolling one at a time; the odds are 
the same. The odds of getting a 5 or 6 on the first die is 2/6 (or 1/3). The odds are also 1/3 on each 
successive roll, for a result of 1/3 * 1/3 * 1/3 or 1/27.  
 
Exercise: “Roll Six Times” 
 
To win a game of “Roll Six Times” you have to roll a d10 six times. Each turn, you must roll higher than 
the current turn number. For example, on turn 3, you must roll a 4 or higher. If you ever roll below the 
turn number, you lose. How hard is it to win a game of “Roll Six Times”?  
 
On turn 1, you have to roll a 2 or higher. This has odds of 9/10, or 90%. On turn 2, the odds reduce to 
80%, and so on. To succeed on every turn the odds are (9/10) x (8/10) x (7/10) x (6/10) x (5/10) x (4/10), 
or about 6%.  
 
Exercise: Determine the smallest die for which “Roll 6 times” is winnable more than half the time. (Any 
integer can be a die for this problem, not just the standard dice sizes.) 



 

Mutually Exclusive Results 
 
We mentioned “mutually exclusive results” in an exercise above. Basically it just means that the two 
results can never happen at the same time. For example, you can’t get results of both heads and tails on 
the same flip. It can’t be “raining” and “not raining” at the same time.  
 
What do non-exclusive results look like? Consider the odds of drawing “A club or an Ace.” There are 13 
clubs and 4 aces, so if these results were mutually exclusive, there would be 17 ways to succeed. But 
one of the cards is both an Ace and a club, so we have to be careful not to count it twice. There are 
actually only 16 ways to succeed in this case. 
 
In an example this small, it’s easy just to count the successes and the failures. But in a larger data set it’s 
not always easy to count all the possible results.  
 
Exercise: Non-Exclusive Results 
 
On a roll of 2d10, what are the odds of rolling at least one 10? The phrase “at least one 10” actually 
includes three different sets of results: all versions 10-X, X-10, and 10-10. So there are a total of 19 ways 
to succeed. That’s 9 versions of 10-X, 9 versions of X-10, plus the single case of 10-10. The total number 
of possible rolls is 100 (10 x 10) so the odds of success are 19/100 or 19%.  
 
Another way to solve this problem is to figure out the ways NOT to succeed, and then subtract that 
value from 1. If you were to fail at the “roll at least one 10” game, that would mean rolling no 10 on your 
first roll (90%) and no 10 on your second roll (90%). Succeeding at both of these requires the product of 
the individual probabilities, so the odds are 0.9 x 0.9 = 0.81. Subtracting the odds of failure from 100%, 
we get 19%, the same answer as above.  
 

Equiprobable Events 
 
Probabilities are easier to figure when all possible results happen with the same frequency. For example, 
heads and tails are both 50%; each number on a d6 is equally likely at 1/6. But some events aren’t that 
simple; on 2d6, the odds of rolling a total of 2 are much lower than the odds of rolling a 7. That’s 
because there are many more ways to roll a 7 than to roll a 2.  
 
To get a better picture of the odds, it’s sometimes helpful to break results down into larger lists of 
equiprobable results.  
 
Exercise: The Robber in Settlers of Catan 
 
How often does the robber move? At the start of each turn in Settlers of Catan, the active player rolls 
2d6 to determine which regions produce resources. On a roll of 7, there is no production, and instead 
the robber is moved. So, the basic question is what are the odds of rolling a 7 on 2d6? 
 



There are 36 possible rolls on 2d6: 6 options for each die, for a total of 36 possible rolls. Of these rolls, 
six add up to 7. They are (1,6), (2,5), (3,4), (4,3), (5,2), and (6,1). So the chance of rolling a total of 7 on 
2d6 is 6/36, or 1/6. This means the robber will move, on average, once every six turns.  
 

Statistically Independent Events 
 
Events are “statistically independent” if the result of one has no effect on the results of the other. In 
general, this is how random events work. The chance of flipping heads is not affected by previous flips 
(or by the weather, the stars, or how much you really deeply need to flip heads). 
 
However, in some situations the odds of a specific random event can be affected by the results of 
previous events. This happens when the randomizer is altered by the events, the best example of which 
is drawing cards from a deck. This type of process can create statistically dependent events. 
 
For example, if you draw two cards from a poker deck, after viewing the first, what are the odds of the 
second card being an Ace? (Compare this to the “rolling at least one 10” problem above). The odds of 
the first card being an Ace are simple, 1/52. However, the odds for the second draw depend on the 
result of the first. 
 
If the first card is an Ace, the odds of the second card being an Ace are 3/51. Only three Aces remain in a 
deck of 51 cards. If your first card is not an Ace, the odds of the second card being an Ace are higher, at 
4/51. 
 
To find the odds of drawing at least one Ace in the first two cards, we can look at both paths and 
determine the odds of each one succeeding, then add those probabilities together for a final answer. In 
Path 1, where the first card is an Ace, we don’t care about the second card, because we have already 
succeeded. This result accounts for 4/52 of the games, or about 7.7%. 
 
In Path 2, the first card is not an Ace, so we only win if the second card is an Ace. The odds of the first 
card NOT being an Ace (this is how we get into this path) are 48/52 or about 92.3%. At this point, the 
odds of drawing an Ace are 4/51, or about 7.8%.  
 
To find the odds of succeeding on this path (remember, success on the first step is defined as NOT 
drawing an Ace) we multiply the two probabilities together. This gives a result of 92.3% x 7.8%, or about 
7.2%.  
 
Because path 1 and path 2 are mutually exclusive (they begin with the mutually exclusive steps “draw an 
Ace” and “draw not an Ace”) we can add those probabilities together for the final result: 7.2% + 7.7% is 
about 14.9%.  
 
As we described with d10s, a much simpler process would be to find the odds of NOT drawing an Ace, 
and subtracting those odds from 1. The odds of drawing no ace are 48/52 for the first card, and 47/51 
for the second. These steps presume no Aces come out of the deck, so there is one simple path. The two 
steps multiply out to about 85.1%. Subtracting this from 100% yields the odds of drawing at least one 
Ace, which is the same solution of 14.9%. 
 



However, the former more protracted analysis above is applicable in may game situations where 
solutions must be obtained on partial data. For example, in the middle of a hand of stud poker, the odds 
of certain cards appearing will depend on what cards that have already been seen. 
 

Expected Value 
  
Another useful concept in probability theory is “expected value.” It can be somewhat counterintuitive, 
since it’s based on average results and might not represent a possible result. It reflects the average 
performance of an experiment over an arbitrarily large number of trials. 
 
For example, the expected value of a single d6 is the average of all equiprobable results (1, 2, 3, 4, 5, 6), 
or 3.5. This is clearly not the most likely result (There is no 3.5 on a d6), just the average of all likely 
results. If you roll a d6 a million times and average the results, the value will be very close to 3.5. If you 
make ten million rolls, the value will be even closer. 
 
Imagine a game where one player gets 7 points each turn, and the other rolls 2d6. Which side would you 
rather take? They both have the same expected value, but which is better? This can be a matter of 
personal taste (tolerance for risk), but it often depends on the game mechanics.  
 
For example, if the winner is the first player to reach 7 or more points, then player 1 can never lose; she 
can only win or tie. On the other hand, if the winner is the first player to reach 8 or more points, then 
the second player wins or ties most of the time. 721 wins, 540 ties, and only 35 losses in 1296 possible 
games.  
 
The problem in this example, chosen on purpose, is that there is a hard cutoff for winning, rather than a 
race for total points. If the goal was just to have the high score in two round, there would be an even 
mix of wins and a small number of ties at 14 points. But “First to X Points” is a fairly common game 
mechanic, both in final victory conditions and many sub-games. 
 
Example: Simple Gambling Game 
 
Computing the game’s expected value is critical in evaluating situations where the numeric values are 
aggregated, such as rolling for points in the example above, or tracking wins and losses in gambling. 
 
If we play a game where you roll a d6 and I pay you $1 for each pip you roll, each instance of that game 
would yield an expected value of $3.50. Many tabletop games work like this (accumulating points rather 
than money) but I’d be a fool to play this game with you for money. So instead, I offer to play by these 
rules if you’ll wager $4 for each game. Now each roll has an expected value of -$0.50 for you and 0.50 
for me. 
 
For a fair game, I could charge you $7 to roll two dice, and pay back a dollar per pip. The expected value 
of 2d6 is 2 x 3.5, or 7, so with a cost of $7 and an expected value of 7, this game has an expected value 
of zero (for both players). 
 
Real casino games usually have a slight edge for the casino, often comparable to a $3.50 return on a $4 
bet (This is 87.5% return-to-player, or RTP). Here’s an example showing how such an edge is calculated. 
 



Example: The Field Bet in Craps. 
 
The field bet is a one-roll bet, meaning that you win or lose after just one roll. If the roll is a total of 3, 4, 
9, 10, or 11, you win 1x your bet. If the roll is 2 or 12, you win 2x. On any other result (5, 6, 7, 8) you lose.  
 
How good is this bet, and how do we express that formally? 
 
First, let’s look at the bet’s expected value. There are 36 possible rolls of 2d6, with total values and odds 
listed on the chart below. The “Ways” column indicates the different number of ways to make a given 
total. For example, there are 6 ways to roll a total of 7 (as we discussed in Settlers of Catan). 
 
The next column, “Pays,” indicates the value of the game as expressed to the player. So when the pet 
pays 1:1, this column shows a 1. Note that when you lose, the game has a value of 0 (you get no money 
back).  
 
The “Value” column adds the player’s original bet back into the formula, since you take that money back 
as well as the house’s pay. So, when you win 1:1, the game has a value of 2, because you are claiming 
your original bet plus the house’s money. When you win 2:1, the game has a value of 3. 
 

Result Ways Pays   Value  Extended Value  
2 1 2 3 3  
3 2 1 2 4  
4 3 1 2 6  
5 4 - - 0  
6 5 - - 0  
7 6 - - 0  
8 5 - - 0  
9 4 1 2 8  
10 3 1 2 6  
11 2 1 2 4  
12 1 2 3 3  

   34/36 = 94.4%, House edge 5.55% 
 
The final column, “Value,” is the product of Ways and Pays. This shows the total value for all instances of 
each result. Basically, we are pretending to play each of the 36 possible games, and adding up the 
results. This is similar to taking the average of all possible die rolls on a d6, and averaging them to find 
the expected value of the roll, and we can do this because all of these individual game results have the 
same probability. In this case, we see that after 36 games of playing the Field Bet, we have won 34 bets. 
 
Each of these 36 games cost us one bet, so we compare the return of 34 with the cost of 36. This gives 
the expected value of the game, which is 34/36, or about 94.4%. The “house advantage” is the rest of 
this money, or about 5.55% that is retained by the casino. 
 
Luckily, most Field bets are better than this, because they actually pay triple (not double) for a roll of 12. 
The “Value” column becomes 4 (3 bets paid plus 1 bet returned). The total value of the game becomes 
35/36, and the house advantage is cut in half, from 2/36 to 1/36, or about 2.78%.  
 



In the very rare case where the casino pays triple on both the 2 and the 12, the game is a perfectly fair 
bet, with 0% advantage for the house. This is actually not unheard-of, though 0% and player-advantage 
games are usually offered under conditions where players must play perfectly to take advantage of 
them, such as some rare varieties of video poker. 
 
As house edges go, 2.78% isn’t bad, though it’s not the best bet on the Craps table. House edges run 
anywhere from nearly zero on some Craps bets, to 5%-20% for other table games and slots, to as much 
as 35% for Keno.  
 

The Gambler’s Fallacy 
 
One well-known misconception about random events is that their results tend to “even out” over time. 
For example, that after several “heads” results, “tails” becomes more likely. If the events are statistically 
independent, such as coin flips, this is not true. 
 
And even if you don’t fall for this fallacy in general, you might still believe that adding more random 
events to a game will counteract the unfair effects of prior random events. This is a type of “comeback 
feature” intended to give hope to the players who fall behind early. However, that remedy doesn’t 
usually work. More strategic decisions can certainly help, but not more random events. This is why the 
best purely random games are extremely short. Once a player falls behind in a random game, he tends 
to stay behind. 
 
Exercise: Running Hot 
 
I just rolled a d6 five times, and it came up “6” every time. Is it more or less likely to roll a 6 on the next 
roll? Are 6’s “running hot” and I’m therefore more likely to get another, or have I “used them all up”? 
 
Answer: Neither. This is not how dice work. The odds of rolling a 6 don’t change at all based on past 
history. Contrast this with a deck of cards, where previous draws will affect what’s left in the deck. The 
gambler’s fallacy is, in some sense, a notion that dice behave like cards. 
 

Expressing odds as “X:Y” 
 
Odds are often written X:Y, for example 3:1 (pronounced 3 to 1). This means the event will happen 3 
times for every 1 time it doesn’t. (This is different from a bet paying 3:1, which means you will be paid 3 
coins, plus your bet returned, on a winning bet of 1. The payouts in gambling games never quite match 
their true odds.) 
 
A simple example is this. Players are drawing for high card, but some players get to draw more cards 
than others. In a 2-player game where player 1 draws 2 cards and player 2 draws 5 cards, the odds of 
player 1 winning the game are 2:5 (2 to 5). Player 2’s odds are the opposite, 5:2. 
 
To convert these expressions to percentages, you have to do a little juggling. 2:5 isn’t the same as 2/5. A 
probability of 2/5 means that the player wins 2 times in every 5 games. But a probability of 2:5 means 
that the player wins 2 games for every 5 losses. The difference is in the total number of games played. In 
the 2:5 instance, there are a total of 7 games (2 wins and 5 losses) so player 1’s odds are actually 2/7. 



 
The conversion is simple. Just add both sides of the expression, which gives you the total number of 
games. Then divide the number of wins into that total number.  
 
Often the odds in this format are written as “against” rather than “for” a win. For example, if the odds 
are 1:4 (20%) they can also be stated as 4:1 against. This means the odds of a loss are 4:1 or 80%.  
 
Exercise: Express the odds of rolling a 7 on 2d6 in X:Y form.  
 
There are 6 ways to roll a 7 out of a total of 36 rolls. This means there are 30 ways not to roll a 7. The 
odds are therefore 6:30, which reduces to 1:5.  
 
Exercise for the Reader: Convert the following X:Y expressions to percentages:   1:6, 2:3, 100:1 
 
Exercise for the Reader: Convert the following percentages to X:Y expressions: 15%, 25%, 99%  
 

Advice for Hobby Game Design: 
 
Typically, hobby games are too complex to be completely analyzed or solved. By comparison, the basic 
strategy table for Blackjack has approximately 300 nodes, and this expands dramatically for anyone 
using even a basic card counting technique. If you know the exact contents of the deck, the table 
(featuring all possible decks) is even more complex. And Blackjack is a short and simple game. A perfect 
strategy table for Settlers of Catan would look like an encyclopedia. 
 
But even if completely analyzing your game design is out of the question, you can still use elements of 
probability theory to dissect segments of your game, and by doing so, get a better understanding of 
what events are likely, unlikely, and impossible.  
 
We tend to use experimental and anecdotal evidence to decide whether random events are working or 
not. You can only playtest your game a limited number of times, but many of the random possibilities 
may be extremely rare. A practical analysis of the random events can give you a better understanding of 
whether your latest dice-rolling catastrophe was a fluke or a serious problem.  
 
Players’ basic understanding of probability is usually fairly sound, though they don’t always have the 
language or the tools for analysis. So it’s important for the designer to explain the randomness as clearly 
as possible to help the players’ experience match up with their expectations. If some random challenge 
seems easy, but is really hard or impossible, the game is going to be frustrating. The opposite is also 
true: apparent long shots that always come in are also no fun.  
 
It’s bad for the game if the random elements are hidden, overly complex, or poorly explained. Fun 
comes from a mix of surprise and understanding. Too much surprise, and the player can get frustrated. 
Too much understanding, and the player can get bored.  
 
This means it’s better for players to think in terms of identifying and managing risks, rather than being 
randomly blown around by chance.  That’s why the decisions have to be real and comprehensible. But 
that’s a topic for another time. 
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